TSTP Solution File: SEV298^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV298^5 : TPTP v6.1.0. Bugfixed v5.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n184.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:34:00 EDT 2014

% Result   : Unknown 1.28s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV298^5 : TPTP v6.1.0. Bugfixed v5.2.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n184.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:46:01 CDT 2014
% % CPUTime  : 1.28 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xc095a8>, <kernel.DependentProduct object at 0xc09518>) of role type named c0_type
% Using role type
% Declaring c0:((fofType->Prop)->Prop)
% FOF formula (<kernel.Constant object at 0xfe1440>, <kernel.DependentProduct object at 0xc099e0>) of role type named c1_type
% Using role type
% Declaring c1:((fofType->Prop)->Prop)
% FOF formula (<kernel.Constant object at 0xc098c0>, <kernel.DependentProduct object at 0xc09c20>) of role type named c2_type
% Using role type
% Declaring c2:((fofType->Prop)->Prop)
% FOF formula (<kernel.Constant object at 0xc09cb0>, <kernel.DependentProduct object at 0xc099e0>) of role type named cP_type
% Using role type
% Declaring cP:(((fofType->Prop)->Prop)->Prop)
% FOF formula (<kernel.Constant object at 0xc09560>, <kernel.DependentProduct object at 0xc09758>) of role type named cSUCC_type
% Using role type
% Declaring cSUCC:(((fofType->Prop)->Prop)->((fofType->Prop)->Prop))
% FOF formula (<kernel.Constant object at 0xc09830>, <kernel.DependentProduct object at 0xc098c0>) of role type named c_less__eq__type
% Using role type
% Declaring c_less__eq_:(((fofType->Prop)->Prop)->(((fofType->Prop)->Prop)->Prop))
% FOF formula (((eq (((fofType->Prop)->Prop)->((fofType->Prop)->Prop))) cSUCC) (fun (Xn:((fofType->Prop)->Prop)) (Xp:(fofType->Prop))=> ((ex fofType) (fun (Xx:fofType)=> ((and (Xp Xx)) (Xn (fun (Xt:fofType)=> ((and (not (((eq fofType) Xt) Xx))) (Xp Xt))))))))) of role definition named cSUCC_def
% A new definition: (((eq (((fofType->Prop)->Prop)->((fofType->Prop)->Prop))) cSUCC) (fun (Xn:((fofType->Prop)->Prop)) (Xp:(fofType->Prop))=> ((ex fofType) (fun (Xx:fofType)=> ((and (Xp Xx)) (Xn (fun (Xt:fofType)=> ((and (not (((eq fofType) Xt) Xx))) (Xp Xt)))))))))
% Defined: cSUCC:=(fun (Xn:((fofType->Prop)->Prop)) (Xp:(fofType->Prop))=> ((ex fofType) (fun (Xx:fofType)=> ((and (Xp Xx)) (Xn (fun (Xt:fofType)=> ((and (not (((eq fofType) Xt) Xx))) (Xp Xt))))))))
% FOF formula (((eq (((fofType->Prop)->Prop)->(((fofType->Prop)->Prop)->Prop))) c_less__eq_) (fun (Xx:((fofType->Prop)->Prop)) (Xy:((fofType->Prop)->Prop))=> (forall (Xp:(((fofType->Prop)->Prop)->Prop)), (((and (Xp Xx)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))->(Xp Xy))))) of role definition named c_less__eq__def
% A new definition: (((eq (((fofType->Prop)->Prop)->(((fofType->Prop)->Prop)->Prop))) c_less__eq_) (fun (Xx:((fofType->Prop)->Prop)) (Xy:((fofType->Prop)->Prop))=> (forall (Xp:(((fofType->Prop)->Prop)->Prop)), (((and (Xp Xx)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))->(Xp Xy)))))
% Defined: c_less__eq_:=(fun (Xx:((fofType->Prop)->Prop)) (Xy:((fofType->Prop)->Prop))=> (forall (Xp:(((fofType->Prop)->Prop)->Prop)), (((and (Xp Xx)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))->(Xp Xy))))
% FOF formula ((cP c1)->((ex ((fofType->Prop)->Prop)) (fun (Xx:((fofType->Prop)->Prop))=> ((and ((and ((c_less__eq_ c0) Xx)) ((c_less__eq_ Xx) c2))) (cP Xx))))) of role conjecture named cBLEDSOE7
% Conjecture to prove = ((cP c1)->((ex ((fofType->Prop)->Prop)) (fun (Xx:((fofType->Prop)->Prop))=> ((and ((and ((c_less__eq_ c0) Xx)) ((c_less__eq_ Xx) c2))) (cP Xx))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['((cP c1)->((ex ((fofType->Prop)->Prop)) (fun (Xx:((fofType->Prop)->Prop))=> ((and ((and ((c_less__eq_ c0) Xx)) ((c_less__eq_ Xx) c2))) (cP Xx)))))']
% Parameter fofType:Type.
% Parameter c0:((fofType->Prop)->Prop).
% Parameter c1:((fofType->Prop)->Prop).
% Parameter c2:((fofType->Prop)->Prop).
% Parameter cP:(((fofType->Prop)->Prop)->Prop).
% Definition cSUCC:=(fun (Xn:((fofType->Prop)->Prop)) (Xp:(fofType->Prop))=> ((ex fofType) (fun (Xx:fofType)=> ((and (Xp Xx)) (Xn (fun (Xt:fofType)=> ((and (not (((eq fofType) Xt) Xx))) (Xp Xt)))))))):(((fofType->Prop)->Prop)->((fofType->Prop)->Prop)).
% Definition c_less__eq_:=(fun (Xx:((fofType->Prop)->Prop)) (Xy:((fofType->Prop)->Prop))=> (forall (Xp:(((fofType->Prop)->Prop)->Prop)), (((and (Xp Xx)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))->(Xp Xy)))):(((fofType->Prop)->Prop)->(((fofType->Prop)->Prop)->Prop)).
% Trying to prove ((cP c1)->((ex ((fofType->Prop)->Prop)) (fun (Xx:((fofType->Prop)->Prop))=> ((and ((and ((c_less__eq_ c0) Xx)) ((c_less__eq_ Xx) c2))) (cP Xx)))))
% Found x:(cP c1)
% Instantiate: x0:=c1:((fofType->Prop)->Prop)
% Found x as proof of (cP x0)
% Found x2:(Xp x0)
% Instantiate: x0:=c2:((fofType->Prop)->Prop)
% Found (fun (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2) as proof of (Xp c2)
% Found (fun (x2:(Xp x0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2) as proof of ((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->(Xp c2))
% Found (fun (x2:(Xp x0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2) as proof of ((Xp x0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->(Xp c2)))
% Found (and_rect00 (fun (x2:(Xp x0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2)) as proof of (Xp c2)
% Found ((and_rect0 (Xp c2)) (fun (x2:(Xp x0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2)) as proof of (Xp c2)
% Found (((fun (P:Type) (x2:((Xp x0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->P)))=> (((((and_rect (Xp x0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))) P) x2) x1)) (Xp c2)) (fun (x2:(Xp x0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2)) as proof of (Xp c2)
% Found (fun (x1:((and (Xp x0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))))=> (((fun (P:Type) (x2:((Xp x0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->P)))=> (((((and_rect (Xp x0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))) P) x2) x1)) (Xp c2)) (fun (x2:(Xp x0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2))) as proof of (Xp c2)
% Found (fun (Xp:(((fofType->Prop)->Prop)->Prop)) (x1:((and (Xp x0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))))=> (((fun (P:Type) (x2:((Xp x0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->P)))=> (((((and_rect (Xp x0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))) P) x2) x1)) (Xp c2)) (fun (x2:(Xp x0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2))) as proof of (((and (Xp x0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))->(Xp c2))
% Found (fun (Xp:(((fofType->Prop)->Prop)->Prop)) (x1:((and (Xp x0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))))=> (((fun (P:Type) (x2:((Xp x0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->P)))=> (((((and_rect (Xp x0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))) P) x2) x1)) (Xp c2)) (fun (x2:(Xp x0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2))) as proof of ((c_less__eq_ x0) c2)
% Found x2:(Xp c0)
% Instantiate: x0:=c0:((fofType->Prop)->Prop)
% Found (fun (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2) as proof of (Xp x0)
% Found (fun (x2:(Xp c0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2) as proof of ((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->(Xp x0))
% Found (fun (x2:(Xp c0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2) as proof of ((Xp c0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->(Xp x0)))
% Found (and_rect00 (fun (x2:(Xp c0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2)) as proof of (Xp x0)
% Found ((and_rect0 (Xp x0)) (fun (x2:(Xp c0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2)) as proof of (Xp x0)
% Found (((fun (P:Type) (x2:((Xp c0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->P)))=> (((((and_rect (Xp c0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))) P) x2) x1)) (Xp x0)) (fun (x2:(Xp c0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2)) as proof of (Xp x0)
% Found (fun (x1:((and (Xp c0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))))=> (((fun (P:Type) (x2:((Xp c0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->P)))=> (((((and_rect (Xp c0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))) P) x2) x1)) (Xp x0)) (fun (x2:(Xp c0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2))) as proof of (Xp x0)
% Found (fun (Xp:(((fofType->Prop)->Prop)->Prop)) (x1:((and (Xp c0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))))=> (((fun (P:Type) (x2:((Xp c0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->P)))=> (((((and_rect (Xp c0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))) P) x2) x1)) (Xp x0)) (fun (x2:(Xp c0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2))) as proof of (((and (Xp c0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))->(Xp x0))
% Found (fun (Xp:(((fofType->Prop)->Prop)->Prop)) (x1:((and (Xp c0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))))=> (((fun (P:Type) (x2:((Xp c0)->((forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))->P)))=> (((((and_rect (Xp c0)) (forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz))))) P) x2) x1)) (Xp x0)) (fun (x2:(Xp c0)) (x3:(forall (Xz:((fofType->Prop)->Prop)), ((Xp Xz)->(Xp (cSUCC Xz)))))=> x2))) as proof of ((c_less__eq_ c0) x0)
% % SZS status GaveUp for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------